MakeItFrom.com
Menu (ESC)

AISI 316LN (S31653) Stainless Steel

AISI 316LN stainless steel is an austenitic stainless steel formulated for primary forming into wrought products. Cited properties are appropriate for the annealed condition. 316LN is the AISI designation for this material. S31653 is the UNS number. Additionally, the British Standard (BS) designation is 316S62.

The graph bars on the material properties cards below compare AISI 316LN stainless steel to: wrought austenitic stainless steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

180

Elastic (Young's, Tensile) Modulus

200 GPa 29 x 106 psi

Elongation at Break

42 %

Fatigue Strength

200 MPa 29 x 103 psi

Poisson's Ratio

0.28

Reduction in Area

51 %

Rockwell B Hardness

80

Shear Modulus

82 GPa 12 x 106 psi

Shear Strength

410 MPa 59 x 103 psi

Tensile Strength: Ultimate (UTS)

590 MPa 86 x 103 psi

Tensile Strength: Yield (Proof)

230 MPa 33 x 103 psi

Thermal Properties

Latent Heat of Fusion

290 J/g

Maximum Temperature: Corrosion

410 °C 770 °F

Maximum Temperature: Mechanical

940 °C 1730 °F

Melting Completion (Liquidus)

1450 °C 2630 °F

Melting Onset (Solidus)

1380 °C 2510 °F

Specific Heat Capacity

470 J/kg-K 0.11 BTU/lb-°F

Thermal Conductivity

15 W/m-K 8.8 BTU/h-ft-°F

Thermal Expansion

17 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

2.3 % IACS

Electrical Conductivity: Equal Weight (Specific)

2.6 % IACS

Otherwise Unclassified Properties

Base Metal Price

19 % relative

Calomel Potential

-40 mV

Density

7.9 g/cm3 490 lb/ft3

Embodied Carbon

3.8 kg CO2/kg material

Embodied Energy

53 MJ/kg 23 x 103 BTU/lb

Embodied Water

150 L/kg 18 gal/lb

Common Calculations

PREN (Pitting Resistance)

27

Resilience: Ultimate (Unit Rupture Work)

200 MJ/m3

Resilience: Unit (Modulus of Resilience)

130 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

25 points

Strength to Weight: Axial

21 points

Strength to Weight: Bending

20 points

Thermal Diffusivity

4.1 mm2/s

Thermal Shock Resistance

13 points

Alloy Composition

Among wrought stainless steels, the composition of AISI 316LN stainless steel is notable for containing a comparatively high amount of nickel (Ni). Nickel is primarily used to achieve a specific microstructure. In addition, it has a beneficial effect on mechanical properties and certain types of corrosion.

Iron (Fe)Fe 62 to 71.9
Chromium (Cr)Cr 16 to 18
Nickel (Ni)Ni 10 to 14
Molybdenum (Mo)Mo 2.0 to 3.0
Manganese (Mn)Mn 0 to 2.0
Silicon (Si)Si 0 to 0.75
Nitrogen (N)N 0.1 to 0.16
Phosphorus (P)P 0 to 0.045
Carbon (C)C 0 to 0.030
Sulfur (S)S 0 to 0.030

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Similar Alloys

Further Reading

ASTM A479: Standard Specification for Stainless Steel Bars and Shapes for Use in Boilers and Other Pressure Vessels

ASTM A182: Standard Specification for Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service

ASTM A276: Standard Specification for Stainless Steel Bars and Shapes

ASTM A240: Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications

ASTM A959: Standard Guide for Specifying Harmonized Standard Grade Compositions for Wrought Stainless Steels

Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, H. S. Khatak and B. Raj (editors), 2002

Pressure Vessels: External Pressure Technology, 2nd ed., Carl T. F. Ross, 2011

Austenitic Stainless Steels: Microstructure and Mechanical Properties, P. Marshall, 1984

ASM Specialty Handbook: Stainless Steels, J. R. Davis (editor), 1994

Advances in Stainless Steels, Baldev Raj et al. (editors), 2010