MakeItFrom.com
Menu (ESC)

H00 C11000 Copper vs. H00 C11600 Copper

Both H00 C11000 copper and H00 C11600 copper are copper alloys. Both are furnished in the H00 (1/8 hard) temper. Their average alloy composition is basically identical.

For each property being compared, the top bar is H00 C11000 copper and the bottom bar is H00 C11600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 33
33
Poisson's Ratio 0.34
0.34
Rockwell F Hardness 68
68
Rockwell Superficial 30T Hardness 55
55
Shear Modulus, GPa 43
43
Shear Strength, MPa 160
160
Tensile Strength: Ultimate (UTS), MPa 250
250
Tensile Strength: Yield (Proof), MPa 210
210

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1080
Melting Onset (Solidus), °C 1070
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
390
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
100
Electrical Conductivity: Equal Weight (Specific), % IACS 100
100

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 9.0
9.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
78
Resilience: Unit (Modulus of Resilience), kJ/m3 200
200
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.7
7.7
Strength to Weight: Bending, points 9.8
9.8
Thermal Diffusivity, mm2/s 110
110
Thermal Shock Resistance, points 9.0
8.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.9 to 100
99.78 to 99.915
Silver (Ag), % 0
0.085 to 0.12
Residuals, % 0 to 0.1
0 to 0.1