MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. EN 1.4423 Stainless Steel

1050A aluminum belongs to the aluminum alloys classification, while EN 1.4423 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is EN 1.4423 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 33
17
Fatigue Strength, MPa 22 to 55
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 44 to 97
520
Tensile Strength: Ultimate (UTS), MPa 68 to 170
850
Tensile Strength: Yield (Proof), MPa 22 to 150
630

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
780
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 650
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
16
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
14
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1200
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
130
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 18
30
Strength to Weight: Bending, points 14 to 25
25
Thermal Diffusivity, mm2/s 94
4.3
Thermal Shock Resistance, points 3.0 to 7.6
31

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 0 to 0.050
0.2 to 0.8
Iron (Fe), % 0 to 0.4
73.8 to 80.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
2.3 to 2.8
Nickel (Ni), % 0
6.0 to 7.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.070
0