MakeItFrom.com
Menu (ESC)

1050A Aluminum vs. Grade Ti-Pd8A Titanium

1050A aluminum belongs to the aluminum alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1050A aluminum and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
200
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 33
13
Fatigue Strength, MPa 22 to 55
260
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 68 to 170
500
Tensile Strength: Yield (Proof), MPa 22 to 150
430

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 660
1660
Melting Onset (Solidus), °C 650
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 230
21
Thermal Expansion, µm/m-K 24
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200
6.9

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.2
49
Embodied Energy, MJ/kg 150
840
Embodied Water, L/kg 1200
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9 to 19
65
Resilience: Unit (Modulus of Resilience), kJ/m3 3.7 to 160
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 6.9 to 18
31
Strength to Weight: Bending, points 14 to 25
31
Thermal Diffusivity, mm2/s 94
8.6
Thermal Shock Resistance, points 3.0 to 7.6
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.25
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.050
98.8 to 99.9
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0
0 to 0.4