MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. 518.0 Aluminum

Both 1060 aluminum and 518.0 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 1.1 to 30
5.0
Fatigue Strength, MPa 15 to 50
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 42 to 75
200
Tensile Strength: Ultimate (UTS), MPa 67 to 130
310
Tensile Strength: Yield (Proof), MPa 17 to 110
190

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 650
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
98
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
24
Electrical Conductivity: Equal Weight (Specific), % IACS 210
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
9.4
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
14
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 6.9 to 13
32
Strength to Weight: Bending, points 14 to 21
38
Thermal Diffusivity, mm2/s 96
40
Thermal Shock Resistance, points 3.0 to 5.6
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.6 to 100
88.1 to 92.5
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 0.35
0 to 1.8
Magnesium (Mg), % 0 to 0.030
7.5 to 8.5
Manganese (Mn), % 0 to 0.030
0 to 0.35
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0 to 0.25
0 to 0.35
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.15
Residuals, % 0
0 to 0.25