MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. C355.0 Aluminum

Both 1060 aluminum and C355.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 1.1 to 30
2.7 to 3.8
Fatigue Strength, MPa 15 to 50
76 to 84
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 67 to 130
290 to 310
Tensile Strength: Yield (Proof), MPa 17 to 110
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 650
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
39
Electrical Conductivity: Equal Weight (Specific), % IACS 210
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
290 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 6.9 to 13
30 to 32
Strength to Weight: Bending, points 14 to 21
36 to 37
Thermal Diffusivity, mm2/s 96
60
Thermal Shock Resistance, points 3.0 to 5.6
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.6 to 100
91.7 to 94.1
Copper (Cu), % 0 to 0.050
1.0 to 1.5
Iron (Fe), % 0 to 0.35
0 to 0.2
Magnesium (Mg), % 0 to 0.030
0.4 to 0.6
Manganese (Mn), % 0 to 0.030
0 to 0.1
Silicon (Si), % 0 to 0.25
4.5 to 5.5
Titanium (Ti), % 0 to 0.030
0 to 0.2
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.1
Residuals, % 0
0 to 0.15