MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. EN 2.4633 Nickel

1060 aluminum belongs to the aluminum alloys classification, while EN 2.4633 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is EN 2.4633 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 30
34
Fatigue Strength, MPa 15 to 50
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 42 to 75
510
Tensile Strength: Ultimate (UTS), MPa 67 to 130
760
Tensile Strength: Yield (Proof), MPa 17 to 110
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 660
1350
Melting Onset (Solidus), °C 650
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 210
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1200
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
210
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 6.9 to 13
26
Strength to Weight: Bending, points 14 to 21
23
Thermal Diffusivity, mm2/s 96
2.9
Thermal Shock Resistance, points 3.0 to 5.6
22

Alloy Composition

Aluminum (Al), % 99.6 to 100
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 0 to 0.35
8.0 to 11
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 0.5
Nickel (Ni), % 0
58.8 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.030
0.1 to 0.2
Vanadium (V), % 0 to 0.050
0
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.050
0
Zirconium (Zr), % 0
0.010 to 0.1