MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. EN AC-21200 Aluminum

Both 1060 aluminum and EN AC-21200 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 30
3.9 to 6.2
Fatigue Strength, MPa 15 to 50
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 67 to 130
410 to 440
Tensile Strength: Yield (Proof), MPa 17 to 110
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
660
Melting Onset (Solidus), °C 650
550
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
34
Electrical Conductivity: Equal Weight (Specific), % IACS 210
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
500 to 930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 6.9 to 13
38 to 40
Strength to Weight: Bending, points 14 to 21
41 to 43
Thermal Diffusivity, mm2/s 96
49
Thermal Shock Resistance, points 3.0 to 5.6
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.6 to 100
93.3 to 95.7
Copper (Cu), % 0 to 0.050
4.0 to 5.0
Iron (Fe), % 0 to 0.35
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0 to 0.030
0.15 to 0.5
Manganese (Mn), % 0 to 0.030
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.25
0 to 0.1
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0 to 0.1
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.1
Residuals, % 0
0 to 0.1