MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. EN AC-43100 Aluminum

Both 1060 aluminum and EN AC-43100 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 30
1.1 to 2.5
Fatigue Strength, MPa 15 to 50
68 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 67 to 130
180 to 270
Tensile Strength: Yield (Proof), MPa 17 to 110
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 650
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
37
Electrical Conductivity: Equal Weight (Specific), % IACS 210
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
66 to 360
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 6.9 to 13
20 to 29
Strength to Weight: Bending, points 14 to 21
28 to 36
Thermal Diffusivity, mm2/s 96
60
Thermal Shock Resistance, points 3.0 to 5.6
8.6 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.6 to 100
86.9 to 90.8
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.030
0.2 to 0.45
Manganese (Mn), % 0 to 0.030
0 to 0.45
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.25
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.030
0 to 0.15
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.1
Residuals, % 0
0 to 0.15