MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. S35000 Stainless Steel

1060 aluminum belongs to the aluminum alloys classification, while S35000 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is S35000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 30
2.3 to 14
Fatigue Strength, MPa 15 to 50
380 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 42 to 75
740 to 950
Tensile Strength: Ultimate (UTS), MPa 67 to 130
1300 to 1570
Tensile Strength: Yield (Proof), MPa 17 to 110
660 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 650
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 210
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 1200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
28 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
1070 to 3360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 6.9 to 13
46 to 56
Strength to Weight: Bending, points 14 to 21
34 to 38
Thermal Diffusivity, mm2/s 96
4.4
Thermal Shock Resistance, points 3.0 to 5.6
42 to 51

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
16 to 17
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.35
72.7 to 76.9
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0

Comparable Variants