MakeItFrom.com
Menu (ESC)

1060-H18 Aluminum vs. 1070-H18 Aluminum

Both 1060-H18 aluminum and 1070-H18 aluminum are aluminum alloys. Both are furnished in the H18 temper. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1060-H18 aluminum and the bottom bar is 1070-H18 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 4.0
4.5
Fatigue Strength, MPa 45
46
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 75
79
Tensile Strength: Ultimate (UTS), MPa 130
140
Tensile Strength: Yield (Proof), MPa 110
120

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 650
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
230
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
61
Electrical Conductivity: Equal Weight (Specific), % IACS 210
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1200
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9
5.9
Resilience: Unit (Modulus of Resilience), kJ/m3 89
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 13
14
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 96
94
Thermal Shock Resistance, points 5.6
6.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.6 to 100
99.7 to 100
Copper (Cu), % 0 to 0.050
0 to 0.040
Iron (Fe), % 0 to 0.35
0 to 0.25
Magnesium (Mg), % 0 to 0.030
0 to 0.030
Manganese (Mn), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.2
Titanium (Ti), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0 to 0.050
0 to 0.050
Zinc (Zn), % 0 to 0.050
0 to 0.040
Residuals, % 0
0 to 0.030