MakeItFrom.com
Menu (ESC)

1060-O Aluminum vs. 4115-O Aluminum

Both 1060-O aluminum and 4115-O aluminum are aluminum alloys. Both are furnished in the annealed condition. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1060-O aluminum and the bottom bar is 4115-O aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 19
38
Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 30
11
Fatigue Strength, MPa 20
39
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 49
71
Tensile Strength: Ultimate (UTS), MPa 72
120
Tensile Strength: Yield (Proof), MPa 21
39

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 650
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
160
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
41
Electrical Conductivity: Equal Weight (Specific), % IACS 210
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
10
Resilience: Unit (Modulus of Resilience), kJ/m3 3.3
11
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 7.4
12
Strength to Weight: Bending, points 14
20
Thermal Diffusivity, mm2/s 96
66
Thermal Shock Resistance, points 3.2
5.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.6 to 100
94.6 to 97.4
Copper (Cu), % 0 to 0.050
0.1 to 0.5
Iron (Fe), % 0 to 0.35
0 to 0.7
Magnesium (Mg), % 0 to 0.030
0.1 to 0.5
Manganese (Mn), % 0 to 0.030
0.6 to 1.2
Silicon (Si), % 0 to 0.25
1.8 to 2.2
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.2
Residuals, % 0
0 to 0.15