MakeItFrom.com
Menu (ESC)

1070 Aluminum vs. Grade 9 Titanium

1070 aluminum belongs to the aluminum alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1070 aluminum and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.5 to 39
11 to 17
Fatigue Strength, MPa 22 to 49
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 48 to 79
430 to 580
Tensile Strength: Ultimate (UTS), MPa 73 to 140
700 to 960
Tensile Strength: Yield (Proof), MPa 17 to 120
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 640
1640
Melting Onset (Solidus), °C 640
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 230
8.1
Thermal Expansion, µm/m-K 23
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
36
Embodied Energy, MJ/kg 160
580
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 7.5 to 14
43 to 60
Strength to Weight: Bending, points 14 to 22
39 to 48
Thermal Diffusivity, mm2/s 94
3.3
Thermal Shock Resistance, points 3.3 to 6.1
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99.7 to 100
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.040
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.25
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.030
92.6 to 95.5
Vanadium (V), % 0 to 0.050
2.0 to 3.0
Zinc (Zn), % 0 to 0.040
0
Residuals, % 0 to 0.030
0 to 0.4

Comparable Variants