MakeItFrom.com
Menu (ESC)

1070A Aluminum vs. ACI-ASTM CT15C Steel

1070A aluminum belongs to the aluminum alloys classification, while ACI-ASTM CT15C steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070A aluminum and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
140
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 2.3 to 33
23
Fatigue Strength, MPa 17 to 51
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 68 to 140
500
Tensile Strength: Yield (Proof), MPa 17 to 120
190

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1080
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 640
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 200
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
36
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
6.1
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 18
90
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
93
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.0 to 14
17
Strength to Weight: Bending, points 14 to 22
17
Thermal Diffusivity, mm2/s 94
3.2
Thermal Shock Resistance, points 3.1 to 6.3
12

Alloy Composition

Aluminum (Al), % 99.7 to 100
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.25
40.3 to 49.2
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0.15 to 1.5
Nickel (Ni), % 0
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.15 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.070
0