MakeItFrom.com
Menu (ESC)

1070A Aluminum vs. C99400 Brass

1070A aluminum belongs to the aluminum alloys classification, while C99400 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070A aluminum and the bottom bar is C99400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 68 to 140
460 to 550
Tensile Strength: Yield (Proof), MPa 17 to 120
230 to 370

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
1070
Melting Onset (Solidus), °C 640
1020
Specific Heat Capacity, J/kg-K 900
400
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
17
Electrical Conductivity: Equal Weight (Specific), % IACS 200
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
30
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1200
310

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
230 to 590
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 7.0 to 14
15 to 17
Strength to Weight: Bending, points 14 to 22
15 to 17
Thermal Shock Resistance, points 3.1 to 6.3
16 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.7 to 100
0.5 to 2.0
Copper (Cu), % 0 to 0.030
83.5 to 96.5
Iron (Fe), % 0 to 0.25
1.0 to 3.0
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 0.5
Nickel (Ni), % 0
1.0 to 3.5
Silicon (Si), % 0 to 0.2
0.5 to 2.0
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.070
0.5 to 5.0
Residuals, % 0
0 to 0.3

Comparable Variants