MakeItFrom.com
Menu (ESC)

1070A-H111 Aluminum vs. 5056-H111 Aluminum

Both 1070A-H111 aluminum and 5056-H111 aluminum are aluminum alloys. Both are furnished in the H111 temper. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1070A-H111 aluminum and the bottom bar is 5056-H111 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 33
14
Fatigue Strength, MPa 17
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 48
210
Tensile Strength: Ultimate (UTS), MPa 73
340
Tensile Strength: Yield (Proof), MPa 17
170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 640
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
29
Electrical Conductivity: Equal Weight (Specific), % IACS 200
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.2
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
39
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 7.5
36
Strength to Weight: Bending, points 14
41
Thermal Diffusivity, mm2/s 94
53
Thermal Shock Resistance, points 3.3
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.7 to 100
93 to 95.4
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 0 to 0.030
0 to 0.1
Iron (Fe), % 0 to 0.25
0 to 0.4
Magnesium (Mg), % 0 to 0.030
4.5 to 5.6
Manganese (Mn), % 0 to 0.030
0.050 to 0.2
Silicon (Si), % 0 to 0.2
0 to 0.3
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.070
0 to 0.1
Residuals, % 0
0 to 0.15