MakeItFrom.com
Menu (ESC)

1070A-H22 Aluminum vs. 1085-H22 Aluminum

Both 1070A-H22 aluminum and 1085-H22 aluminum are aluminum alloys. Both are furnished in the H22 temper. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 1070A-H22 aluminum and the bottom bar is 1085-H22 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 12
10
Fatigue Strength, MPa 45
49
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 59
53
Tensile Strength: Ultimate (UTS), MPa 97
88
Tensile Strength: Yield (Proof), MPa 57
63

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 640
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
230
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
61
Electrical Conductivity: Equal Weight (Specific), % IACS 200
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1200
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 23
29
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 10
9.1
Strength to Weight: Bending, points 17
16
Thermal Diffusivity, mm2/s 94
94
Thermal Shock Resistance, points 4.3
3.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.7 to 100
99.85 to 100
Copper (Cu), % 0 to 0.030
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.25
0 to 0.12
Magnesium (Mg), % 0 to 0.030
0 to 0.020
Manganese (Mn), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.1
Titanium (Ti), % 0 to 0.030
0 to 0.020
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.070
0 to 0.030
Residuals, % 0
0 to 0.010