MakeItFrom.com
Menu (ESC)

1100 Aluminum vs. EN AC-42100 Aluminum

Both 1100 aluminum and EN AC-42100 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1100 aluminum and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 1.1 to 32
3.4 to 9.0
Fatigue Strength, MPa 32 to 71
76 to 82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 86 to 170
280 to 290
Tensile Strength: Yield (Proof), MPa 28 to 150
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
610
Melting Onset (Solidus), °C 640
600
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 220
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 59
41
Electrical Conductivity: Equal Weight (Specific), % IACS 190
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.76 to 52
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 170
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 8.7 to 17
30 to 31
Strength to Weight: Bending, points 16 to 25
37 to 38
Thermal Diffusivity, mm2/s 90
66
Thermal Shock Resistance, points 3.7 to 7.4
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99 to 99.95
91.3 to 93.3
Copper (Cu), % 0.050 to 0.2
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.050
0 to 0.1
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1