MakeItFrom.com
Menu (ESC)

1100 Aluminum vs. Grade CX2M Nickel

1100 aluminum belongs to the aluminum alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100 aluminum and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 1.1 to 32
45
Fatigue Strength, MPa 32 to 71
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 86 to 170
550
Tensile Strength: Yield (Proof), MPa 28 to 150
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 660
1500
Melting Onset (Solidus), °C 640
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 220
10
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
65
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.76 to 52
210
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 170
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 8.7 to 17
18
Strength to Weight: Bending, points 16 to 25
17
Thermal Diffusivity, mm2/s 90
2.7
Thermal Shock Resistance, points 3.7 to 7.4
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99 to 99.95
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 1.0
0 to 1.5
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0