MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. EN 1.4877 Stainless Steel

1100A aluminum belongs to the aluminum alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.5 to 34
36
Fatigue Strength, MPa 35 to 74
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 59 to 99
420
Tensile Strength: Ultimate (UTS), MPa 89 to 170
630
Tensile Strength: Yield (Proof), MPa 29 to 150
200

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 640
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1190
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
180
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 9.1 to 17
22
Strength to Weight: Bending, points 16 to 25
20
Thermal Diffusivity, mm2/s 93
3.2
Thermal Shock Resistance, points 4.0 to 7.6
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99 to 100
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 1.0
36.4 to 42.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0