MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. N09777 Nickel

1100A aluminum belongs to the aluminum alloys classification, while N09777 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.5 to 34
39
Fatigue Strength, MPa 35 to 74
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 59 to 99
400
Tensile Strength: Ultimate (UTS), MPa 89 to 170
580
Tensile Strength: Yield (Proof), MPa 29 to 150
240

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 640
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.2
7.4
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1190
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
180
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 9.1 to 17
20
Strength to Weight: Bending, points 16 to 25
19
Thermal Shock Resistance, points 4.0 to 7.6
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99 to 100
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 19
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 1.0
28.5 to 47.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
2.0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0