MakeItFrom.com
Menu (ESC)

1200 Aluminum vs. ASTM B817 Type I

1200 aluminum belongs to the aluminum alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1200 aluminum and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 1.1 to 28
4.0 to 13
Fatigue Strength, MPa 25 to 69
360 to 520
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 85 to 180
770 to 960
Tensile Strength: Yield (Proof), MPa 28 to 160
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 660
1600
Melting Onset (Solidus), °C 650
1550
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 230
7.1
Thermal Expansion, µm/m-K 23
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 190
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 8.2
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1190
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 180
2310 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 8.7 to 19
48 to 60
Strength to Weight: Bending, points 16 to 26
42 to 49
Thermal Diffusivity, mm2/s 92
2.9
Thermal Shock Resistance, points 3.8 to 8.1
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99 to 100
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.4
Manganese (Mn), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0 to 1.0
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.050
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0 to 0.4