MakeItFrom.com
Menu (ESC)

1200 Aluminum vs. Grade Ti-Pd18 Titanium

1200 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1200 aluminum and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 23 to 48
320
Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 1.1 to 28
17
Fatigue Strength, MPa 25 to 69
350
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 85 to 180
710
Tensile Strength: Yield (Proof), MPa 28 to 160
540

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 660
1640
Melting Onset (Solidus), °C 650
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 230
8.2
Thermal Expansion, µm/m-K 23
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 190
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.2
41
Embodied Energy, MJ/kg 150
670
Embodied Water, L/kg 1190
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 5.7 to 180
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 8.7 to 19
44
Strength to Weight: Bending, points 16 to 26
39
Thermal Diffusivity, mm2/s 92
3.3
Thermal Shock Resistance, points 3.8 to 8.1
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99 to 100
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.25
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 1.0
0
Titanium (Ti), % 0 to 0.050
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0 to 0.4