MakeItFrom.com
Menu (ESC)

1200-O Aluminum vs. 5059-O Aluminum

Both 1200-O aluminum and 5059-O aluminum are aluminum alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1200-O aluminum and the bottom bar is 5059-O aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 28
25
Fatigue Strength, MPa 33
200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 57
230
Tensile Strength: Ultimate (UTS), MPa 87
360
Tensile Strength: Yield (Proof), MPa 29
170

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 650
510
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
110
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
29
Electrical Conductivity: Equal Weight (Specific), % IACS 190
95

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.2
9.1
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
75
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 8.9
36
Strength to Weight: Bending, points 16
41
Thermal Diffusivity, mm2/s 92
44
Thermal Shock Resistance, points 3.9
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99 to 100
89.9 to 94
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 1.0
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 0.050
0.6 to 1.2
Silicon (Si), % 0 to 1.0
0 to 0.45
Titanium (Ti), % 0 to 0.050
0 to 0.2
Zinc (Zn), % 0 to 0.1
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0 to 0.15
0 to 0.15