MakeItFrom.com
Menu (ESC)

1230A Aluminum vs. EN AC-46600 Aluminum

Both 1230A aluminum and EN AC-46600 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1230A aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 4.5 to 34
1.1
Fatigue Strength, MPa 35 to 74
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 89 to 170
180
Tensile Strength: Yield (Proof), MPa 29 to 150
110

Thermal Properties

Latent Heat of Fusion, J/g 400
490
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 640
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
29
Electrical Conductivity: Equal Weight (Specific), % IACS 200
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 9.1 to 17
18
Strength to Weight: Bending, points 16 to 25
25
Thermal Diffusivity, mm2/s 93
51
Thermal Shock Resistance, points 4.0 to 7.6
8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.3 to 100
85.6 to 92.4
Copper (Cu), % 0 to 0.1
1.5 to 2.5
Iron (Fe), % 0 to 0.7
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0 to 0.050
0 to 0.35
Manganese (Mn), % 0 to 0.050
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.7
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.050
0 to 1.0
Residuals, % 0
0 to 0.15