MakeItFrom.com
Menu (ESC)

1235 Aluminum vs. EN AC-42100 Aluminum

Both 1235 aluminum and EN AC-42100 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1235 aluminum and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 28 to 34
3.4 to 9.0
Fatigue Strength, MPa 23 to 58
76 to 82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 80 to 84
280 to 290
Tensile Strength: Yield (Proof), MPa 23 to 57
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 640
600
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 230
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
41
Electrical Conductivity: Equal Weight (Specific), % IACS 200
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 24
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 8.2 to 8.6
30 to 31
Strength to Weight: Bending, points 15 to 16
37 to 38
Thermal Diffusivity, mm2/s 93
66
Thermal Shock Resistance, points 3.6 to 3.7
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.35 to 100
91.3 to 93.3
Copper (Cu), % 0 to 0.050
0 to 0.050
Iron (Fe), % 0 to 0.65
0 to 0.19
Magnesium (Mg), % 0 to 0.050
0.25 to 0.45
Manganese (Mn), % 0 to 0.050
0 to 0.1
Silicon (Si), % 0 to 0.65
6.5 to 7.5
Titanium (Ti), % 0 to 0.060
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0 to 0.070
Residuals, % 0
0 to 0.1