MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. 324.0 Aluminum

Both 1350 aluminum and 324.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is 324.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.4 to 30
3.0 to 4.0
Fatigue Strength, MPa 24 to 50
77 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 68 to 190
210 to 310
Tensile Strength: Yield (Proof), MPa 25 to 170
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
610
Melting Onset (Solidus), °C 650
550
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 230
150
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
34
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1200
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
6.8 to 8.9
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
85 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
52
Strength to Weight: Axial, points 7.0 to 19
22 to 32
Strength to Weight: Bending, points 14 to 27
29 to 38
Thermal Diffusivity, mm2/s 96
62
Thermal Shock Resistance, points 3.0 to 8.2
9.7 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99.5 to 100
87.3 to 92.2
Boron (B), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.010
0
Copper (Cu), % 0 to 0.050
0.4 to 0.6
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
0 to 1.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 0.010
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.1
7.0 to 8.0
Titanium (Ti), % 0 to 0.020
0 to 0.2
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0 to 1.0
Residuals, % 0 to 0.1
0 to 0.2

Comparable Variants