MakeItFrom.com
Menu (ESC)

1350 Aluminum vs. 535.0 Aluminum

Both 1350 aluminum and 535.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 1350 aluminum and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 20 to 45
70
Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 1.4 to 30
10
Fatigue Strength, MPa 24 to 50
70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 44 to 110
190
Tensile Strength: Ultimate (UTS), MPa 68 to 190
270
Tensile Strength: Yield (Proof), MPa 25 to 170
140

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
630
Melting Onset (Solidus), °C 650
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 230
100
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61 to 62
23
Electrical Conductivity: Equal Weight (Specific), % IACS 200 to 210
79

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.3
9.4
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.77 to 54
24
Resilience: Unit (Modulus of Resilience), kJ/m3 4.4 to 200
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 7.0 to 19
28
Strength to Weight: Bending, points 14 to 27
35
Thermal Diffusivity, mm2/s 96
42
Thermal Shock Resistance, points 3.0 to 8.2
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99.5 to 100
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0 to 0.050
0 to 0.0050
Chromium (Cr), % 0 to 0.010
0
Copper (Cu), % 0 to 0.050
0 to 0.050
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.4
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0 to 0.010
0.1 to 0.25
Silicon (Si), % 0 to 0.1
0 to 0.15
Titanium (Ti), % 0 to 0.020
0.1 to 0.25
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0 to 0.15