MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. EN 2.4608 Nickel

2007 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.6 to 8.0
34
Fatigue Strength, MPa 91 to 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 220 to 250
410
Tensile Strength: Ultimate (UTS), MPa 370 to 420
620
Tensile Strength: Yield (Proof), MPa 240 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.0
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
170
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 33 to 38
20
Strength to Weight: Bending, points 37 to 40
19
Thermal Diffusivity, mm2/s 48
2.9
Thermal Shock Resistance, points 16 to 19
16

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.1
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 3.3 to 4.6
0
Iron (Fe), % 0 to 0.8
11.4 to 23.8
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.2
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.8
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0