MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. Nickel 80A

2007 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6 to 8.0
22
Fatigue Strength, MPa 91 to 110
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 220 to 250
660
Tensile Strength: Ultimate (UTS), MPa 370 to 420
1040
Tensile Strength: Yield (Proof), MPa 240 to 270
710

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 510
1310
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.0
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1130
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
210
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
1300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 33 to 38
35
Strength to Weight: Bending, points 37 to 40
27
Thermal Diffusivity, mm2/s 48
2.9
Thermal Shock Resistance, points 16 to 19
31

Alloy Composition

Aluminum (Al), % 87.5 to 95
0.5 to 1.8
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 3.3 to 4.6
0
Iron (Fe), % 0 to 0.8
0 to 3.0
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.2
69.4 to 79.7
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
1.8 to 2.7
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0