MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. 7108A Aluminum

Both 201.0 aluminum and 7108A aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 4.4 to 20
11 to 13
Fatigue Strength, MPa 120 to 150
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 290
210
Tensile Strength: Ultimate (UTS), MPa 370 to 470
350
Tensile Strength: Yield (Proof), MPa 220 to 400
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 570
520
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
36
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
110

Otherwise Unclassified Properties

Base Metal Price, % relative 38
10
Density, g/cm3 3.1
2.9
Embodied Carbon, kg CO2/kg material 8.7
8.3
Embodied Energy, MJ/kg 160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
610 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
47
Strength to Weight: Axial, points 33 to 42
33 to 34
Strength to Weight: Bending, points 37 to 44
38
Thermal Diffusivity, mm2/s 45
59
Thermal Shock Resistance, points 19 to 25
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.1 to 95.1
91.6 to 94.4
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 4.0 to 5.2
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.15
0 to 0.3
Magnesium (Mg), % 0.15 to 0.55
0.7 to 1.5
Manganese (Mn), % 0.2 to 0.5
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.2
Silver (Ag), % 0.4 to 1.0
0
Titanium (Ti), % 0.15 to 0.35
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0 to 0.1
0 to 0.15

Comparable Variants