MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. EN 1.4568 Stainless Steel

201.0 aluminum belongs to the aluminum alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.4 to 20
2.3 to 21
Fatigue Strength, MPa 120 to 150
220 to 670
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 290
520 to 930
Tensile Strength: Ultimate (UTS), MPa 370 to 470
830 to 1620
Tensile Strength: Yield (Proof), MPa 220 to 400
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 38
13
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.7
2.8
Embodied Energy, MJ/kg 160
40

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
290 to 5710
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 33 to 42
30 to 58
Strength to Weight: Bending, points 37 to 44
25 to 40
Thermal Diffusivity, mm2/s 45
4.3
Thermal Shock Resistance, points 19 to 25
23 to 46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.1 to 95.1
0.7 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.0 to 5.2
0
Iron (Fe), % 0 to 0.15
70.9 to 76.8
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.7
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0