MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. EN AC-42100 Aluminum

Both 201.0 aluminum and EN AC-42100 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
91
Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 4.4 to 20
3.4 to 9.0
Fatigue Strength, MPa 120 to 150
76 to 82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 370 to 470
280 to 290
Tensile Strength: Yield (Proof), MPa 220 to 400
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
41
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
140

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.7
8.0
Embodied Energy, MJ/kg 160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
53
Strength to Weight: Axial, points 33 to 42
30 to 31
Strength to Weight: Bending, points 37 to 44
37 to 38
Thermal Diffusivity, mm2/s 45
66
Thermal Shock Resistance, points 19 to 25
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.1 to 95.1
91.3 to 93.3
Copper (Cu), % 4.0 to 5.2
0 to 0.050
Iron (Fe), % 0 to 0.15
0 to 0.19
Magnesium (Mg), % 0.15 to 0.55
0.25 to 0.45
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Silicon (Si), % 0 to 0.1
6.5 to 7.5
Silver (Ag), % 0.4 to 1.0
0
Titanium (Ti), % 0.15 to 0.35
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0 to 0.1
0 to 0.1

Comparable Variants