MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. EN AC-45000 Aluminum

Both 201.0 aluminum and EN AC-45000 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
77
Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 4.4 to 20
1.1
Fatigue Strength, MPa 120 to 150
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 370 to 470
180
Tensile Strength: Yield (Proof), MPa 220 to 400
110

Thermal Properties

Latent Heat of Fusion, J/g 390
470
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 570
520
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
27
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
81

Otherwise Unclassified Properties

Base Metal Price, % relative 38
11
Density, g/cm3 3.1
3.0
Embodied Carbon, kg CO2/kg material 8.7
7.7
Embodied Energy, MJ/kg 160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
80
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
47
Strength to Weight: Axial, points 33 to 42
17
Strength to Weight: Bending, points 37 to 44
24
Thermal Diffusivity, mm2/s 45
47
Thermal Shock Resistance, points 19 to 25
8.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.1 to 95.1
82.2 to 91.8
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 4.0 to 5.2
3.0 to 5.0
Iron (Fe), % 0 to 0.15
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0.15 to 0.55
0 to 0.55
Manganese (Mn), % 0.2 to 0.5
0.2 to 0.65
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 0 to 0.1
5.0 to 7.0
Silver (Ag), % 0.4 to 1.0
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.15 to 0.35
0 to 0.25
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0 to 0.1
0 to 0.35