MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. EN AC-47100 Aluminum

Both 201.0 aluminum and EN AC-47100 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is EN AC-47100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
80
Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 4.4 to 20
1.1
Fatigue Strength, MPa 120 to 150
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 370 to 470
270
Tensile Strength: Yield (Proof), MPa 220 to 400
160

Thermal Properties

Latent Heat of Fusion, J/g 390
570
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 570
560
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 19
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
30
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
100

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.7
7.6
Embodied Energy, MJ/kg 160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
170
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
53
Strength to Weight: Axial, points 33 to 42
28
Strength to Weight: Bending, points 37 to 44
35
Thermal Diffusivity, mm2/s 45
54
Thermal Shock Resistance, points 19 to 25
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.1 to 95.1
81.4 to 88.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.0 to 5.2
0.7 to 1.2
Iron (Fe), % 0 to 0.15
0 to 1.3
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.15 to 0.55
0 to 0.35
Manganese (Mn), % 0.2 to 0.5
0 to 0.55
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.1
10.5 to 13.5
Silver (Ag), % 0.4 to 1.0
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.15 to 0.35
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0 to 0.1
0 to 0.25