MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. Nickel 890

201.0 aluminum belongs to the aluminum alloys classification, while nickel 890 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.4 to 20
39
Fatigue Strength, MPa 120 to 150
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 290
400
Tensile Strength: Ultimate (UTS), MPa 370 to 470
590
Tensile Strength: Yield (Proof), MPa 220 to 400
230

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 38
47
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 8.7
8.2
Embodied Energy, MJ/kg 160
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
180
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 42
20
Strength to Weight: Bending, points 37 to 44
19
Thermal Shock Resistance, points 19 to 25
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.1 to 95.1
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 4.0 to 5.2
0 to 0.75
Iron (Fe), % 0 to 0.15
17.3 to 33.9
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0 to 0.1
1.0 to 2.0
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0.15 to 0.35
0.15 to 0.6
Residuals, % 0 to 0.1
0