MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. N08028 Stainless Steel

201.0 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
180
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.4 to 20
45
Fatigue Strength, MPa 120 to 150
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 290
400
Tensile Strength: Ultimate (UTS), MPa 370 to 470
570
Tensile Strength: Yield (Proof), MPa 220 to 400
240

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 19
16

Otherwise Unclassified Properties

Base Metal Price, % relative 38
37
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 8.7
6.4
Embodied Energy, MJ/kg 160
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
210
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 42
19
Strength to Weight: Bending, points 37 to 44
19
Thermal Diffusivity, mm2/s 45
3.2
Thermal Shock Resistance, points 19 to 25
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.1 to 95.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 4.0 to 5.2
0.6 to 1.4
Iron (Fe), % 0 to 0.15
29 to 40.4
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0