MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. 383.0 Aluminum

Both 2011 aluminum and 383.0 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is 383.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 8.5 to 18
3.5
Fatigue Strength, MPa 74 to 120
150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 310 to 420
280
Tensile Strength: Yield (Proof), MPa 140 to 310
150

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 540
540
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 140 to 170
96
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 45
23
Electrical Conductivity: Equal Weight (Specific), % IACS 100 to 130
74

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.1
2.8
Embodied Carbon, kg CO2/kg material 7.9
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
150
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
50
Strength to Weight: Axial, points 27 to 37
28
Strength to Weight: Bending, points 32 to 40
34
Thermal Diffusivity, mm2/s 51 to 64
39
Thermal Shock Resistance, points 14 to 19
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 94.6
79.7 to 88.5
Bismuth (Bi), % 0.2 to 0.6
0
Copper (Cu), % 5.0 to 6.0
2.0 to 3.0
Iron (Fe), % 0 to 0.7
0 to 1.3
Lead (Pb), % 0.2 to 0.6
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.4
9.5 to 11.5
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.3
0 to 3.0
Residuals, % 0 to 0.15
0 to 0.5