MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. S17400 Stainless Steel

2011 aluminum belongs to the aluminum alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.5 to 18
11 to 21
Fatigue Strength, MPa 74 to 120
380 to 670
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 190 to 250
570 to 830
Tensile Strength: Ultimate (UTS), MPa 310 to 420
910 to 1390
Tensile Strength: Yield (Proof), MPa 140 to 310
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 190
850
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140 to 170
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 45
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100 to 130
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
14
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
880 to 4060
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 27 to 37
32 to 49
Strength to Weight: Bending, points 32 to 40
27 to 35
Thermal Diffusivity, mm2/s 51 to 64
4.5
Thermal Shock Resistance, points 14 to 19
30 to 46

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 94.6
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 5.0 to 6.0
3.0 to 5.0
Iron (Fe), % 0 to 0.7
70.4 to 78.9
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0