MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. 5086 Aluminum

Both 2011A aluminum and 5086 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 6.8 to 16
1.7 to 20
Fatigue Strength, MPa 75 to 100
88 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190 to 250
160 to 230
Tensile Strength: Ultimate (UTS), MPa 310 to 410
270 to 390
Tensile Strength: Yield (Proof), MPa 140 to 310
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
31
Electrical Conductivity: Equal Weight (Specific), % IACS 96
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
86 to 770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
50
Strength to Weight: Axial, points 28 to 37
28 to 40
Strength to Weight: Bending, points 33 to 40
34 to 44
Thermal Diffusivity, mm2/s 49
52
Thermal Shock Resistance, points 14 to 18
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.1
93 to 96.3
Bismuth (Bi), % 0.2 to 0.6
0
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 4.5 to 6.0
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.5
Lead (Pb), % 0.2 to 0.6
0
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0
0.2 to 0.7
Silicon (Si), % 0 to 0.4
0 to 0.4
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.3
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15