MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. AISI 304Cu Stainless Steel

2011A aluminum belongs to the aluminum alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.8 to 16
45
Fatigue Strength, MPa 75 to 100
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 250
370
Tensile Strength: Ultimate (UTS), MPa 310 to 410
530
Tensile Strength: Yield (Proof), MPa 140 to 310
210

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 190
930
Melting Completion (Liquidus), °C 660
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.9
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 28 to 37
19
Strength to Weight: Bending, points 33 to 40
19
Thermal Diffusivity, mm2/s 49
3.5
Thermal Shock Resistance, points 14 to 18
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.1
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 4.5 to 6.0
3.0 to 4.0
Iron (Fe), % 0 to 0.5
63.9 to 72
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0