MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. EN 1.4901 Stainless Steel

2011A aluminum belongs to the aluminum alloys classification, while EN 1.4901 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.8 to 16
19
Fatigue Strength, MPa 75 to 100
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 250
460
Tensile Strength: Ultimate (UTS), MPa 310 to 410
740
Tensile Strength: Yield (Proof), MPa 140 to 310
490

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 190
650
Melting Completion (Liquidus), °C 660
1490
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 96
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 7.9
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1150
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
620
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 28 to 37
26
Strength to Weight: Bending, points 33 to 40
23
Thermal Diffusivity, mm2/s 49
6.9
Thermal Shock Resistance, points 14 to 18
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.1
0 to 0.020
Bismuth (Bi), % 0.2 to 0.6
0
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 4.5 to 6.0
0
Iron (Fe), % 0 to 0.5
85.8 to 89.1
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.3
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0