MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. EN AC-42200 Aluminum

Both 2011A aluminum and EN AC-42200 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 6.8 to 16
3.0 to 6.7
Fatigue Strength, MPa 75 to 100
86 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 310 to 410
320
Tensile Strength: Yield (Proof), MPa 140 to 310
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
610
Melting Onset (Solidus), °C 550
600
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40
Electrical Conductivity: Equal Weight (Specific), % IACS 96
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 7.9
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
410 to 490
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
53
Strength to Weight: Axial, points 28 to 37
34 to 35
Strength to Weight: Bending, points 33 to 40
40 to 41
Thermal Diffusivity, mm2/s 49
66
Thermal Shock Resistance, points 14 to 18
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.1
91 to 93.1
Bismuth (Bi), % 0.2 to 0.6
0
Copper (Cu), % 4.5 to 6.0
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.19
Lead (Pb), % 0.2 to 0.6
0
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0 to 0.4
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.3
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1

Comparable Variants