MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. EN AC-44100 Aluminum

Both 2011A aluminum and EN AC-44100 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is EN AC-44100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 6.8 to 16
4.9
Fatigue Strength, MPa 75 to 100
64
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 310 to 410
180
Tensile Strength: Yield (Proof), MPa 140 to 310
87

Thermal Properties

Latent Heat of Fusion, J/g 390
570
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
590
Melting Onset (Solidus), °C 550
580
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
34
Electrical Conductivity: Equal Weight (Specific), % IACS 96
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.5
Embodied Carbon, kg CO2/kg material 7.9
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
53
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 44
55
Strength to Weight: Axial, points 28 to 37
19
Strength to Weight: Bending, points 33 to 40
27
Thermal Diffusivity, mm2/s 49
58
Thermal Shock Resistance, points 14 to 18
8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.1
84.4 to 89.5
Bismuth (Bi), % 0.2 to 0.6
0
Copper (Cu), % 4.5 to 6.0
0 to 0.15
Iron (Fe), % 0 to 0.5
0 to 0.65
Lead (Pb), % 0.2 to 0.6
0 to 0.1
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.4
10.5 to 13.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.15