MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. C17500 Copper

2011A aluminum belongs to the aluminum alloys classification, while C17500 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 6.8 to 16
6.0 to 30
Fatigue Strength, MPa 75 to 100
170 to 310
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Shear Strength, MPa 190 to 250
200 to 520
Tensile Strength: Ultimate (UTS), MPa 310 to 410
310 to 860
Tensile Strength: Yield (Proof), MPa 140 to 310
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 660
1060
Melting Onset (Solidus), °C 550
1020
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 96
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.1
8.9
Embodied Carbon, kg CO2/kg material 7.9
4.7
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
120 to 2390
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 44
18
Strength to Weight: Axial, points 28 to 37
9.7 to 27
Strength to Weight: Bending, points 33 to 40
11 to 23
Thermal Diffusivity, mm2/s 49
59
Thermal Shock Resistance, points 14 to 18
11 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.1
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Bismuth (Bi), % 0.2 to 0.6
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 4.5 to 6.0
95.6 to 97.2
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0.2 to 0.6
0
Silicon (Si), % 0 to 0.4
0 to 0.2
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0 to 0.5