MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. N07776 Nickel

2011A aluminum belongs to the aluminum alloys classification, while N07776 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.8 to 16
39
Fatigue Strength, MPa 75 to 100
220
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
79
Shear Strength, MPa 190 to 250
470
Tensile Strength: Ultimate (UTS), MPa 310 to 410
700
Tensile Strength: Yield (Proof), MPa 140 to 310
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
970
Melting Completion (Liquidus), °C 660
1550
Melting Onset (Solidus), °C 550
1500
Specific Heat Capacity, J/kg-K 870
430
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
85
Density, g/cm3 3.1
8.6
Embodied Carbon, kg CO2/kg material 7.9
15
Embodied Energy, MJ/kg 150
210
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
220
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 28 to 37
22
Strength to Weight: Bending, points 33 to 40
20
Thermal Shock Resistance, points 14 to 18
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.1
0 to 2.0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 22
Copper (Cu), % 4.5 to 6.0
0
Iron (Fe), % 0 to 0.5
0 to 24.5
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0