MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. 1200 Aluminum

Both 2014A aluminum and 1200 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 6.2 to 16
1.1 to 28
Fatigue Strength, MPa 93 to 150
25 to 69
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 130 to 290
54 to 100
Tensile Strength: Ultimate (UTS), MPa 210 to 490
85 to 180
Tensile Strength: Yield (Proof), MPa 110 to 430
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 510
650
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
230
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
58
Electrical Conductivity: Equal Weight (Specific), % IACS 110
190

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.0
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
5.7 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 19 to 45
8.7 to 19
Strength to Weight: Bending, points 26 to 46
16 to 26
Thermal Diffusivity, mm2/s 55
92
Thermal Shock Resistance, points 9.0 to 22
3.8 to 8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.8 to 95
99 to 100
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 1.0
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 0.050
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0.5 to 0.9
0 to 1.0
Titanium (Ti), % 0 to 0.15
0 to 0.050
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants