MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. 206.0 Aluminum

Both 2014A aluminum and 206.0 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 6.2 to 16
8.4 to 12
Fatigue Strength, MPa 93 to 150
88 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 130 to 290
260
Tensile Strength: Ultimate (UTS), MPa 210 to 490
330 to 440
Tensile Strength: Yield (Proof), MPa 110 to 430
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110
99

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
270 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 19 to 45
30 to 40
Strength to Weight: Bending, points 26 to 46
35 to 42
Thermal Diffusivity, mm2/s 55
46
Thermal Shock Resistance, points 9.0 to 22
17 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.8 to 95
93.3 to 95.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
4.2 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.15
Magnesium (Mg), % 0.2 to 0.8
0.15 to 0.35
Manganese (Mn), % 0.4 to 1.2
0.2 to 0.5
Nickel (Ni), % 0 to 0.1
0 to 0.050
Silicon (Si), % 0.5 to 0.9
0 to 0.1
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants