MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. 5456 Aluminum

Both 2014A aluminum and 5456 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 6.2 to 16
11 to 18
Fatigue Strength, MPa 93 to 150
130 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 130 to 290
190 to 210
Tensile Strength: Ultimate (UTS), MPa 210 to 490
320 to 340
Tensile Strength: Yield (Proof), MPa 110 to 430
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 210
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
97

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.1
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
170 to 470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 19 to 45
33 to 35
Strength to Weight: Bending, points 26 to 46
38 to 40
Thermal Diffusivity, mm2/s 55
48
Thermal Shock Resistance, points 9.0 to 22
14 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.8 to 95
92 to 94.8
Chromium (Cr), % 0 to 0.1
0.050 to 0.2
Copper (Cu), % 3.9 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 0.2 to 0.8
4.7 to 5.5
Manganese (Mn), % 0.4 to 1.2
0.5 to 1.0
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0.5 to 0.9
0 to 0.25
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants