MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. C22000 Bronze

2014A aluminum belongs to the aluminum alloys classification, while C22000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 6.2 to 16
1.9 to 45
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Shear Strength, MPa 130 to 290
200 to 300
Tensile Strength: Ultimate (UTS), MPa 210 to 490
260 to 520
Tensile Strength: Yield (Proof), MPa 110 to 430
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 510
1020
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 150
190
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
44
Electrical Conductivity: Equal Weight (Specific), % IACS 110
45

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
21 to 1110
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 19 to 45
8.1 to 17
Strength to Weight: Bending, points 26 to 46
10 to 17
Thermal Diffusivity, mm2/s 55
56
Thermal Shock Resistance, points 9.0 to 22
8.8 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.8 to 95
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
89 to 91
Iron (Fe), % 0 to 0.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0.5 to 0.9
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
8.7 to 11
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.2